
CS152: Computer Systems Architecture
RISC-V Assembly, x86 Assembly

(And Encoding)

Sang-Woo Jun

Fall 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

What does an ISA encoding look like?

❑ ADD: 0x000000001,
SUB: 0x00000002,
LW: 0x000000003,
SW: 0x00000004, …?

❑ Haphazard encoding makes processor design complicated!
o More chip resources, more power consumption, less performance

RISC/CISC decisions

CISC
x86

RISC
RISC-V

Simpler
Fewer

More general

Complex
Larger number

Specialized instructions

In what way is an ISA “simpler” or “complex”?
And how will it effect hardware design/performance?

The Important Points

❑ How much work does each instruction do?

❑ RISC (RISC-V) cleanly divides instructions into three categories
1. Computational operation: from register file to register file

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

This is every instruction in RISC-V base ISA
(RV32I)

RISC-V instruction encoding

❑ Restrictions
o 4 bytes per instruction

o Different instructions have different parameters (registers, immediates, …)

o Various fields should be encoded to consistent locations
• Simpler decoding circuitry

❑ Answer: RISC-V uses 6 “types” of instruction encoding

We’re not going to look at everything…Small number of types

1/6: RISC-V R-Type encoding

❑ Relatively straightforward, register-register operations encoding

❑ Remember:
o if (inst.type == ALU) rf[inst.arg1] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

o In 4 bytes, type, arg1, arg2, arg3, op needs to be encoded

1/6: R-Type Computational operations

❑ Arithmetic, comparison, logical, shift operations

❑ Register-register instructions
o 2 source operand registers

o 1 destination register

o Format: op dst, src1, src2

Arithmetic Comparison Logical Shift

add, sub slt, sltu and, or, xor sll, srl, sra

set less than
set less than unsigned

Shift left logical
Shift right logical

Shift right arithmetic
Signed/unsigned?

Arithmetic/logical?

2/6: I-Type Encoding

❑ Some instructions need “immediate” values
o e.g., “addi x1, x2, 32” <- 32 is an immediate value encoded in the instruction

o R-Type does not have slots for this

2/6 RISC-V I-Type encoding

❑ Register-Immediate operations encoding
o One register, one immediate as input, one register as output

Immediate value limited to 12 bits signed!
addi x5, x6, 2048 # Error: illegal operands `addi x5,x6,2048'

Operands in same location!

2/6: I-Type Computational operations

❑ Register-immediate operations
o 2 source operands

• One register read

• One immediate value encoded in the instruction

o 1 destination register

o Format: op dst, src, imm
• eg., addi x1, x2, 10

Format Arithmetic Comparison Logical Shift

register-
register

add, sub slt, sltu and, or, xor sll, srl, sra

register-
immediate

addi slti, sltiu andi, ori, xori slli, srli, srai

No “subi” instead use negative with “addi”

Limited to 12 bits! (Why?)

3/6: RISC-V Load/Store operations

❑ Format: op dst, offset(base)
o Address specified by a pair of <base address, offset>

o e.g., lw x1, 4(x2) # Load a word (4 bytes) from [x2]+4 to x1

o The offset is a small constant

❑ Variants for types
o lw/sw: Word (4 bytes)

o lh/lhu/sh: Half (2 bytes)

o lb/lbu/sb: Byte (1 byte)

o ‘u’ variant is for unsigned loads
• Half and Byte reads extends read data to 32 bits. Signed loads are sign-bit aware

3/6: S-Type encoding

❑ Store operation: two register input, no output
o e.g.,

sw src, offset(base)

S-Type

Limited to 12 bits

4/6: RISC-V Control flow instructions -
Branching

❑ Format: cond src1, src2, label

❑ If condition is met, jump to label. Otherwise, continue to next

beq bne blt bge bltu bgeu

== != < >= < >=

(Assume x1=a; x2=b; x3=c;)

gcc

4.6: SB-Type encoding

❑ Store operation: two register input, no output
o e.g.,

sw src, offset(base)
beq r1, r2, label Operands in same location!

(Bit width not to scale…)

S-Type

SB-Type

Only 12 bits of offset can fit! -> Jump target can be max 2^12 bits away

5/6: RISC-V Control flow instructions
– Jump and Link

❑ Format:
o jal dst, label – Jump to ‘label’, store PC+4 in dst

o jalr dst, offset(base) – Jump to rf[base]+offset, store PC+4 in dst
• e.g., jalr x1, 4(x5) Jumps to x5+4, stores PC+4 in x1

❑ Why do we need two variants?
o jal has a limit on how far it can jump

• (Due to immediate value encoding width, shown soon)

o jalr used to jump to locations defined at runtime
• Needed for many things including function calls

(e.g., Many callers calling one function)

…
 jal x1, function1
 …
function1:
 …
 jalr x0, 0(x1)

5/6: UJ-Type encoding

❑ One destination register, one immediate operand
o UB-Type: JAL (Jump and link)

Only 20 bits of offset! What if target is farther?

5/6: RISC-V Relative addressing

❑ Problem: jump target offset is small!
o For branches: 12 bits, For JAL: 20 bits

o How does it deal with larger program spaces?

o Solution: PC-relative addressing (PC = PC + imm)
• Remember format: beq x5, x6, label

• Translation from label to offset done by assembler

• Works fine if branch target is nearby. If not, AUIPC and other tricks by assembler

SB-Type

U-Type

Problem: What if this is not enough!?

6/6: Load upper immediate instructions

❑ LUI: Load upper immediate
o lui dst, immediate → dst = immediate<<12

o Can load (32-12 = 20) bits

o Used to load large (~32 bits) immediate values to registers

o lui followed by addi (load 12 bits) to load 32 bits

❑ AUIPC: Add upper immediate to PC
o auipc, dst, immediate → dst = PC + immediate<<12

o Can load (32-12 = 20) bits

o auipc followed by addi, then jalr to allow long jumps within any 32 bit address

Typically not used by human programmers!
Assemblers use them to implement complex operations

6/6: RISC-V U-Type and UJ-Type encoding

❑ One destination register, one immediate operand
o U-Type: LUI (Load upper immediate), AUIPC (Add upper immediate to PC)

Typically not used by human programmer

o UB-Type: JAL (Jump and link)
Operands in same location!

LUI+ADD or AUIPC+Branch works quite well together!
(20 + 12 = 32)

Aside: Why is the immediate field 12 bits?

❑ If most immediate values are larger, this instruction is useless!
o Why not encode more imm, and reduce register count?

Benchmark-driven ISA design

❑ Make the common case fast!
o 12~16 bits capture most cases

“CSCE 51: Lecture 03 Instruction Set Principles ,“YonghongYan, University of South Carolina

For immediates For branches

RISC-V Design consideration:
Consistent operand encoding location

❑ Simplifies circuits, resulting in less chip resource usage

CS152: Computer Systems Architecture
x86 Assembly

(And Encoding)

Sang-Woo Jun

Fall 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

x86 encoding

❑ Many many complex instructions
o Fixed-size encoding will waste too much space

o Variable-length encoding!

o 1 byte – 15 bytes encoding

❑ Complex decoding logic in hardware
o Hardware translates instructions to simpler

micro operations
• Simple instructions: 1–1

• Complex instructions: 1–many

o Microengine similar to RISC

o Market share makes this economically viable

Comparable performance to RISC! But with translation overhead
Compilers avoid complex instructions

Meanwhile: x86 – Addressing modes

❑ Typical x86 assembly instructions have many addressing mode variants

❑ e.g., ‘add’ has two input operands, storing the add in the second

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

add <reg>, <reg>

add <mem>, <reg>

add <reg>, <mem>

add <imm>, <reg>

add <imm>, <mem>

Examples
add $10, %eax — EAX is set to EAX + 10
addb $10, (%eax) — add 10 to the single byte stored at memory address stored in
EAX

Example source: Guide to x86 Assembly - Yale FLINT Group

CISC! But no “Memory -> Memory”

CISC ISAs typically mix
arithmetic + load/store

❑ Remember x86 “add” example
o Arithmetic instruction can access memory, store in memory

❑ Some special Load/Store instructions also do exist
o e.g., “mov” with same addressing modes

o e.g., “vmovupd” in AVX extensions…

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

x86 Complex addressing modes:
Complex encoding!
❑ “imul eax, [rdx+rcx*4-0x4]”

o Encoded to single instruction “0f af 44 8a fc”

o Signed multiplication between eax, and a value from memory

o Two additions and one multiplication before memory request!
• (Which architectural component is responsible for this arithmetic?)

o One multiplication after memory request comes back

❑ Who performs the memory address arithmetic?
o Separate ALU? Time-share ALU with actual imul operation?

o Microarchitectural details not enforced by ISA

x86: CISC requires complex encoding!

❑ So many possibilities within a single instruction
o Complex, variable-width data to encode

o Complex, high-latency decode logic unavoidable!

Bristol community college, “CIS-77 Introduction to Computer Systems”

Variable-length: Many fields are optional
→ The location (bit offset) of each field is

always changing!

e.g., Immediate values can use
either 0, 1,2,4 bytes to encode

Aside: Conditional execution in CISC and
RISC

Conditional execution in CISC:
Condition codes

❑ Implicitly managed bitmap of flags
o e.g., Carry, Overflow, Negative, Equal to zero, less than, …

o Flags set by previously executed instruction

❑ e.g., x86 “cmp” compares two values and sets condition code flags
o Usual addressing modes

o Jump instruction variants
read condition code flags

Conditional execution in CISC:
Condition codes

❑ Some instructions can execute only if conditions are met
o “Predicated instructions”

o ARM MOVHS (Move higher or same) only moves if previous instruction resulted in
“higher or same” flag being set. Otherwise NOP

o Can remove a costly conditional branch instruction if used well

o Carry bits can be useful for large adds, …

Predicated instructions in ARM

C Code Without predicated instructions With predicated instructions

RISC-V Condition codes

❑ RISC-V does not have condition codes
o Designers wanted simpler communications between pipeline stages

Wrapping up

❑ Two ends of the spectrum: RISC and CISC
o RISC simplifies processor hardware, but same programs result in more code

o CISC reduces code volume, but complicates processor hardware

❑ To reason about this trade-off, we need to know their actual effects
o How much clock speed degradation do we get with more complex decode?

o How much transistor overhead is complex decode?

o How much instruction count increase caused by RISC ISA?

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

Up next!

The Important Points

❑ RISC-V (RISC) instructions are cleanly divided into categories
o ALU, Branch, Memory – Specifically the six encoding types

o Lower encoding density, but simplifies decoding

❑ x86 (CISC) does NOT cleanly divide work into categories
o Each instruction can do a combination of ALU, Branch, Memory

o Higher density, but complicates decoding

The Important Points

❑ RISC-V (RISC) instructions are fixed-width
o immediate values cannot be encoded in full (32 bits) into one instruction

o e.g., addi encodes 12 bits, AUIPC encodes 20 bits

o ISA carefully designed to require only two instructions per 32-bit word

o (register file being 32, opcode being 7 bits, all balance into this)

❑ x86 (CISC) instructions are variable-width
o One immediate value can be encoded into one long (4bytes+) instructions

o Complicates encoding, but fewer instructions

Aside: Handling I/O

❑ How can a processor communicate with the outside world?

❑ Special instructions? Sometimes!
o RISC-V defines CSR (Control and Status Registers) instructions

o Check processor capability (I/M/E/A/..?), performance counters, system calls, …

o “Port-mapped I/O”

❑ E.g., x86 has “IN”, “OUT” instructions
o Goes back to how 8080 did I/O

o “IN $0x60, %al” reads a keyboard input from the PS/2 controller

Source: Wikipedia

Aside: Handling I/O

❑ For efficient communication, memory-mapped I/O
o Happens outside the processor

o I/O device directed to monitor CPU address bus, intercepting I/O requests
• Each device assigned one or more memory regions to monitor

• Some memory commands handles by memory, some by peripherals!

Example:
In the original Nintendo GameBoy, reading from address 0xFF00
returned a bit mask of currently pressed buttons

Both approaches require one CPU instruction per word I/O…

Aside: Handling I/O

❑ Even faster option: DMA (Direct Memory Access)
o Off-chip DMA Controller can be directed to read/write data from memory without

CPU intervention

o Once DMA transfer is initiated, CPU can continue doing other work

o Used by high-performance peripherals like PCIe-attached GPUs, NICs, and SSDs
• Hopefully we will have time to talk about PCIe!

o Contrast: Memory-mapped I/O requires one CPU instruction for one word of I/O
• CPU busy, blocking I/O hurts performance for long latency I/O

Wrapping up…

❑ Design principles
1. Simplicity favors regularity

2. Smaller is faster

3. Good design demands good compromises

❑ Make the common case fast

❑ Powerful instruction ⇏ higher performance
o Fewer instructions required, but complex instructions are hard to implement

• May slow down all instructions, including simple ones

o Compilers are good at making fast code from simple instructions

	Slide 1: CS152: Computer Systems Architecture RISC-V Assembly, x86 Assembly (And Encoding)
	Slide 2: What does an ISA encoding look like?
	Slide 3: RISC/CISC decisions
	Slide 4: The Important Points
	Slide 5
	Slide 6: RISC-V instruction encoding
	Slide 7: 1/6: RISC-V R-Type encoding
	Slide 8: 1/6: R-Type Computational operations
	Slide 9: 2/6: I-Type Encoding
	Slide 10: 2/6 RISC-V I-Type encoding
	Slide 11: 2/6: I-Type Computational operations
	Slide 12: 3/6: RISC-V Load/Store operations
	Slide 13: 3/6: S-Type encoding
	Slide 14: 4/6: RISC-V Control flow instructions - Branching
	Slide 15: 4.6: SB-Type encoding
	Slide 16: 5/6: RISC-V Control flow instructions – Jump and Link
	Slide 17: 5/6: UJ-Type encoding
	Slide 18: 5/6: RISC-V Relative addressing
	Slide 19: 6/6: Load upper immediate instructions
	Slide 20: 6/6: RISC-V U-Type and UJ-Type encoding
	Slide 21: Aside: Why is the immediate field 12 bits?
	Slide 22: Benchmark-driven ISA design
	Slide 23: RISC-V Design consideration: Consistent operand encoding location
	Slide 24: CS152: Computer Systems Architecture x86 Assembly (And Encoding)
	Slide 25: x86 encoding
	Slide 26: Meanwhile: x86 – Addressing modes
	Slide 27: CISC ISAs typically mix arithmetic + load/store
	Slide 28: x86 Complex addressing modes: Complex encoding!
	Slide 29: x86: CISC requires complex encoding!
	Slide 30: Aside: Conditional execution in CISC and RISC
	Slide 31: Conditional execution in CISC: Condition codes
	Slide 32: Conditional execution in CISC: Condition codes
	Slide 33: Predicated instructions in ARM
	Slide 34: RISC-V Condition codes
	Slide 35: Wrapping up
	Slide 36: The Important Points
	Slide 37: The Important Points
	Slide 38
	Slide 39: Aside: Handling I/O
	Slide 40: Aside: Handling I/O
	Slide 41: Aside: Handling I/O
	Slide 42: Wrapping up…

